基于稀疏阵赝热光系统的强度关联成像研究

陈明亮 李恩荣 王 慧 沈 夏 龚文林 韩申生

(中国科学院上海光学精密机械研究所量子光学重点实验室,上海 201800)

摘要 强度关联成像在近几年取得很大的突破,其应用价值越来越明显。以随机涨落的热光作为光源是强度关联 成像的前提。目前常使用激光穿过旋转的毛玻璃产生赝热光。鉴于使用毛玻璃产生赝热光的局限性,提出了使用 稀疏阵独立子光源产生赝热光,并在这种光源结构下讨论了基于线性关联算法的强度关联成像和基于稀疏约束非 线性算法的强度关联成像的异同。

关键词 相干光学;强度关联成像;稀疏约束;稀疏阵

中图分类号 O436 文献标识码 A doi: 10.3788/AOS201232.0503001

Ghost Imaging Based on Sparse Array Pseudothermal Light System

Chen Mingliang Li Enrong Wang Hui Shen Xia Gong Wenlin Han Shensheng

(Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract Great breakthroughs have been made in research of ghost imaging in recent years. The application value of ghost imaging is increasingly obvious. The precondition of ghost imaging is that its light source should be random fluctuating thermal light. Presently, pseudothermal light is usually generated by passing a laser beam through a revolving ground glass. In view of the limitations of such a method, this paper proposes to generate pseudothermal light via sparse array independent source combining system, and discusses the differences between two algorithms, i.e., linear correlation algorithm and sparsity constraint nonlinear algorithm, in ghost imaging.

Key words coherence optics; ghost imaging; sparsity constraint; sparse array

OCIS codes 030.6600; 110.1758; 100.3020; 050.1960

1 引 言

强度关联成像(GI)^[1~3]在近年取得很大突破。 自从利用经典的电磁场相干性理论^[4,5]证明可以使 用热光场实现 GI^[6]以来,GI 具有了更加广阔的应 用空间。最近的研究还表明 GI 可以方便地应用在 夫琅禾费区^[7],从而为其在遥感领域中的应用增加 了新的可能性。GI 和传统成像相比有两个大的区 别:1) GI 的光源参与成像过程,并且需要光源具有 热光的统计特性,即要求光场具有空间和时间的随 机涨落特性,光场强度二阶关联函数的最大值接近 2^[8];2) GI 的单次采样要求在一个相干时间内完 成。目前实验上多采用赝热光代替真实热光开展 GI的理论与应用研究,产生赝热光最常用的方法是 由 Martienssen 等^[9]提出的,使用激光穿越旋转毛 玻璃的方法,赝热光由毛玻璃中百万量级的无规分 布的细小颗粒调制激光场产生。我们把赝热光光场 强度涨落的特征时间定义为赝热相干时间,此赝热 相干时间可由毛玻璃的转速来控制。当探测时间远 小于赝热相干时间时,该光场的统计特性满足热光 的要求^[10]。在实际应用中这种方法带来的问题是: 1)毛玻璃无规分布的细小颗粒调制激光场使得其 所产生的散斑场不可控制,无法预置散斑场实现单

收稿日期: 2011-10-20; 收到修改稿日期: 2012-01-08

基金项目:国家 863 计划(2011AA120102)、国家自然科学基金(6087709)和上海市自然科学基金重点项目(09JC141500) 资助课题。

作者简介:陈明亮(1982—),男,博士研究生,主要从事强度关联成像方面的研究。E-mail: cml2007@mail.ustc.edu.cn 导师简介:韩申生(1960—),男,博士生导师,主要从事强度关联成像方面的研究。E-mail: sshan@mail.shcnc.ac.cn (通信联系人)

臂 GI^[11,12];2) 毛玻璃的有限面积使得该方法产生 的独立散斑图样数目也受到限制,在大数据量采样 时需要更换不同的毛玻璃,增加了使用时的复杂度; 3)产生的赝热光能量受到毛玻璃损伤阈值的限制, 从而限制了 GI 技术在遥感领域的应用。根据 J. W. Goodman 的理论^[8],大于等于 5 个以上独立子 光源合成的光场已经接近热光场的统计分布特性, 其理论上的二阶关联系数可以接近 1.8 左右,独立 子光源个数越多其统计特性越接近真实热光。本文 采用光源相位随机调制的少量独立子光源合束产生 可应用于 GI 的赝热光源,并在这种光源结构下讨 论基于线性关联算法的 GI^[1~6]和基于稀疏约束非 线性算法的 GI^[13,14](GISC)的差别。

基于稀疏约束和冗余表象的数据采集和信号重 构理论是近 30 年发展起来的不同于经典香农信息 论的全新信息理论,已经在压缩感知等领域内显示 出了巨大的应用潜力。Candes 等^[15~17]、Donoho^[18] 和 Baraniukr 等^[19]的大量工作已经从数学上严格证 明了在远低于奈奎斯特采样极限的情况下使用压缩 感知采样可以高概率重构目标信息。压缩感知采样 要求目标具有稀疏特性或者目标在某些表象下具有 稀疏特性,若目标信号长度为 N,不为零的系数个 数为S,利用随机探测模式,在采样数 M 远小干尼 奎斯特采样极限时就可以高概率的重构目标信 息^[20]。2009年以色列的 Ori 等^[13]的实验证明,应 用压缩感知采样算法可以显著地降低 GI 所需的采 样样本数。同年本小组在实验中发现,利用自适应 稀疏结构表象的 GISC 在超完备基的情况下具有超 分辨的能力^[14]。

基于稀疏约束的非线性算法要求探测矩阵 Φ

具有某些特殊的性质,Candes等^[15,16]早期的工作证明,好的探测矩阵需要满足受限等距特性(RIP)。目前高斯随机矩阵和伯努利随机矩阵被证明满足 RIP条件。2007年,Bajwa等^[21]首次将托普利兹随 机矩阵作为压缩感知的探测矩阵,并在数学上严格 求解了信号重构的概率。同年 DeVore^[22]将循环结 构随机矩阵作为探测矩阵。2008年,Sebert等^[23]将 分块托普利兹矩阵作为压缩感知的探测矩阵。托普 利兹矩阵和循环矩阵大大降低了矩阵元变量的个 数,提高了计算速度并降低硬件实现的复杂度。以 上两种结构矩阵的行与行之间存在相同变量,但是 采样过程中矩阵的列向量相互独立。

本论文采用稀疏阵独立子光源合束产生赝热光 的方法实现 GI。该方法产生赝热光的光场强度的 统计特性在空间分布具有周期性,该探测矩阵不同 于以往所有的随机探测矩阵:该矩阵的行向量具有 周期涨落特性,不同周期之间对应位置列向量具有 高度的关联性,将这种矩阵命名为关联结构随机矩 阵(CSRM)。

2 理论分析

当光源到目标的距离 z_t 和到参考臂探测器的 距离 z_r 相等时 GI 成实像^[24],可以直接计算出 GI 结果。

为简便起见,以下理论表述采用一维形式。设参考面光场坐标为 u,参考面光场分布函数为 U(u),物面光场分布函数和参考面光场函数相同, 目标面坐标为 u',目标透过率函数为 t(u'),物臂探 测面坐标 x_t,物臂探测面的光场为 U_t(x_t),物体到 物臂探测器距离为 z₁,关联像^[6]应该为

$$G^{(2,2)}(u) = \langle |U(u)|^{2} \int dx_{t} |U_{t}(x_{t})|^{2} \rangle = \langle |U(u)|^{2} \int dx_{t} \left| \int U(u')t(u')h(u',x_{t};z_{1})du' \right|^{2} \rangle = \int dx_{t} \langle \left| \int U(u)U(u')t(u')h(u',x_{t};z_{1})du' \right|^{2} \rangle = \int dx_{t} \int \langle U(u)U^{*}(u)U(u')U^{*}(u'') \rangle \times t(u')h(u',x_{t};z_{1})t(u'')h^{*}(u'',x_{t};z_{1})du' du'',$$
(1)

式中 $h(u', x_t, z_1) = \frac{\exp(jkz_1)}{j\lambda z_1} \exp\left[\frac{jk}{2z_1}(u'-x_t)^2\right]$ 为物体到物臂探测器的光学传递函数。

根据 Goodman 的理论^[8],大于等于 5 个以上独立子光源合成的光场已经接近热光场的统计分布特性, 当物面距离子光源面足够远且子光源数目足够多时,*U*(*u*)近似为圆对称高斯随机变量,满足

 $\langle U(u)U^*(u)U(u')U^*(u'')\rangle \approx [\langle U(u)U^*(u)\rangle\langle U(u')U^*(u'')\rangle + \langle U(u)U^*(u'')\rangle\langle U(u')U^*(u)\rangle], (2)$ 和论文[6]的推导相同,从上述两式可以得到

$$G^{(2,2)}(u) \approx \langle U(u)^* U(u) \rangle \int \langle U_t^*(x_t) U_t(x_t) \rangle \mathrm{d}x_t + \int \left| \langle U^*(u) U_t(x_t) \rangle \right|^2 \mathrm{d}x_t, \qquad (3)$$

(3)式中,第一项为均匀本底,物体细节信息包含在第二项当中:

$$\left|\langle U^*(u)U_t(x_t)\rangle\right|^2 = \left|\langle \int U^*(u)U(u')t(u')h(u',x_t,z_1)du'\rangle\right|^2.$$
(4)

假设稀疏阵独立子光源是具有相同波长的高斯光束,那么利用激光光场传递标准模型^[25],可得发射源 上 *m* 位置的独立子光源在距离 *z* 位置的光场分布函数为

$$U_m(u) = \frac{w_0}{w(z)} \exp\left[-\frac{(u-s_m)^2}{w^2(z)}\right] \exp\left\{-j\left[kz - \arctan\left(\frac{z}{z_0}\right)\right]\right\} \exp\left[-jk \frac{(u-s_m)^2}{2R(z)}\right],\tag{5}$$

(5)式中 w_0 为高斯光束束腰半径, z 为光场传播距离, s_m 为光源面上独立子光束中心坐标, $k = 2\pi/\lambda$ 为波矢 值, λ 为波长, $z_0 = \pi w_0^2/\lambda$ 为高斯光束瑞利长度, $w(z) = w_0 [1 + (z/z_0)^2]^{1/2}$ 为高斯光束沿传播方向的横向 尺度函数, $R(z) = z [1 + (z_0/z)^2]$ 为高斯光束等相面曲率半径。

假设单次测量中独立子光源预置相位为 \$_m,其中 m 代表子光源的位置,则 N_s 个子光源合束传输后光场 分布函数如下:

$$U(u) = \sum_{m}^{N_s} U_m(u) \exp(j\phi_m), \qquad (6)$$

(4)式可写成

$$\left| \langle U^{*}(u)U_{t}(x_{t}) \rangle \right|^{2} = \left| \langle \sum_{m=1}^{N_{s}} U_{m}^{*}(u) \exp(-j\phi_{m}) \int_{m'=1}^{N_{s}} U_{m'}(u') \exp(j\phi_{m'})t(u')h(u',x_{t},z_{1}) du' \rangle \right|^{2} = \left| \int du't(u')h(u',x_{t},z_{1}) \sum_{m,m'=1}^{N_{s}} U_{m}^{*}(u)U_{m'}(u') \langle \exp(-j\phi_{m}) \exp(j\phi_{m'}) \rangle \right|^{2} = \left| \int du't(u')h(u',x_{t},z_{1}) \sum_{m,m'=1}^{N_{s}} U_{m}^{*}(u)U_{m'}(u') \delta_{mm'} \right|^{2} = \left| \int du't(u')h(u',x_{t},z_{1}) \sum_{m=1}^{N_{s}} U_{m}^{*}(u)U_{m'}(u') \right|^{2}.$$
(7)

当 $z \gg z_0$ 时,各独立子光源的光场充分叠加,单个独立子光源传播视场 $L = 2\lambda z / \pi w_0$ 远大于光源尺寸 D,且 $w(z) \approx w_0 z / z_0$, $R(z) \approx z_0$ 这时(5)式可简化为

$$U_m(u) = C_0 \exp\left(-\frac{k^2 w_0^2 u^2}{4z^2}\right) \exp\left(-\frac{jk}{2z}u^2\right) \exp\left(\frac{jk}{z}ux_m\right),\tag{8}$$

式中 $C_0 = z_0/z \cdot \exp\{-j[kz - \arctan(z/z_0)]\}$ 为关于传播距离z的系数。设发射面独立子光源中心间距为d。则根据光栅方程相关理论^[26]可得

$$\sum_{mn=1}^{N_s} U_m^*(u) U_m(u') = \left| C_0 \right|^2 \exp\left[-\frac{k^2 w_0^2 (u^2 + u'^2)}{4z^2} \right] \exp\left[\frac{jk}{2z} (u^2 - u'^2) \right] g(u' - u), \qquad (9)$$

(9)式中 $g(u) = \exp\left[\frac{jkud}{2z}(N_s - 1)\right] \frac{\sin(N_skud/2z)}{\sin(kud/2z)}, |g(u)| 是关于 u 周期为L_p = 元/d 的函数。当 N_s 足够$ $大时, <math>|g(u)| \doteq u = m_0 L_p$ 位置附近的取值会远大于其余位置的取值, m_0 为整数, 如图 1 所示。当 $u' = u + m_0 L_p$ 时, $|g(u'-u)| = N_s,$ 根据上述结果, 结合(7)、(9)两式可得

$$\left|\langle U^{*}(u)U_{t}(x_{t})\rangle\right|^{2} \approx |C'|^{2} \left|\sum_{m_{0}} t(u+m_{0}L_{p})h(u+m_{0}L_{p},x_{t},z_{1})\exp\left\{-\frac{k^{2}\omega_{0}^{2}}{4z^{2}}\left[u^{2}+(u+m_{0}L_{p})^{2}\right]\right\}\right|^{2}.(10)$$

(10)式中 C'为常数。如果目标尺度 $\delta_0 > L_p$,那么(10)式中的求和对每一个给定的 u 会有多个 m_0 ,上式 对 x_t 积分后一般不给出 t(u) 的简单关系式,此时由关联计算得到的结果无法分辨目标。因此利用稀疏阵赝 热光源的 GI 要求目标尺度小于一个 L_p 。

如果目标尺度
$$\delta_0 < L_p$$
,(10) 式中的求和对每一个给定的 u 会有唯一一个 m_0 与之对应,则(10)式可化简为
 $|\langle U^*(u)U_i(x_i)\rangle|^2 \approx |C'|^2 \exp\left\{-\frac{k^2 \omega_0^2}{2z^2} \left[u^2 + (u+m_0L_p)^2\right]\right\} |t(u+m_0L_p)h(u+m_0L_p,x_i,z_i)|^2 = |C'|^2 \exp\left\{-\frac{k^2 \omega_0^2}{2z^2} \left[u^2 + (u+m_0L_p)^2\right]\right\} |t(u+m_0L_p)|^2,$ (11)

可见,
$$|\langle U^*(u)U_t(x_t)\rangle|^2$$
 近似不依赖于 x_t , 对 x_t 积分后给出
 $\int dx_t |\langle U^*(u)U_t(x_t)\rangle|^2 \approx |C''|^2 \exp\left\{-\frac{k^2\omega_0^2}{2z^2}\left[u^2 + (u+m_0L_p)^2\right]\right\} |t(u+m_0L_p)|^2.$ (12)

(12)式中 C''为常数,对于每个设定的 m_0 ,u 的取值 依赖于: $|u+m_0L_p-u'_0| < L_p/2$,式中 u'_0 为目标的 中心点坐标。当 $m_0 = 0$ 时关联计算得到 0 级 GI 像, $|m_0| \ge 1$ 的像为高级次 GI 像。从(12)式可看出,0 级 GI 像的能量要远大于高级次 GI 像。

3 模拟和实验结果

实验排布如图 2 所示,激光经光阑选模后通过 透镜 L₁ 穿越旋转的毛玻璃产生赝热散斑场^[10]。毛 玻璃上的激光光斑大小 D 由透镜 L₁ 摆放位置来控 制,该散斑场传播一段距离 f_2 后的横向相干尺度 δx_0 为 $f_2\lambda/D$,在此处放置焦距为 f_2 的透镜 L₂ 准 直散斑,其后紧贴稀疏阵列模板,模板上稀疏阵小孔 直径为 a,小孔中心最小间距为 d,且满足关系 a < $\delta x_0 < d$,因此单个小孔内最多包含一个独立的散 斑。此时从稀疏阵模板出射的光场为光源分布由稀 疏阵列模板确定的独立子光源相干合束的光场。本 文中毛玻璃只提供相位随机变化的独立子光源,这 和以往使用光栅直接调制赝热光场的方法有很大的 区别^[27~29]。实验中稀疏阵采用周期排布的 5×5 模 板。光源波长为 0.650 μ m,小孔直径为 300 μ m,子光 源中心间距为 600 μ m;传播距离 $z_r = z_t = 1.0$ m,物 臂接收光透镜 L₃ 的焦距 f_3 为 50 mm;参考臂探测 器选用阵列探测器,像元大小为 4.65 μ m;物臂探测 器为无空间分辨能力的桶探测器。

模拟过程中,GI采用的数值模型为经典的统计 光学 GI 模型^[30,31],GISC 则把单次采样的参考臂二 维光场作为随机探测矩阵 **Φ** 的行向量^[14],**M** 次测 量构成 **M**×**N** 阶矩阵,物臂桶探测器接收的信号为 **Y**,待测目标为 **X**,利用稀疏约束的非线性图像复原 算法求解欠定方程:

 $Y = \boldsymbol{\Phi} X + \boldsymbol{\varepsilon},$

式中 *ε* 是噪声。实验光路结构如图 2 所示。模拟中 采用 5×5 独立子光源相干合成产生赝热光。

图(3)中G⁽²⁾为光场中心点和整个光场面的二

图 3 模拟结果。(a)光场 $L_p \times L_p$ 区域的二阶关联函数 $G^{(2)}$; (b)光场 $3L_p \times 3L_p$ 区域的二阶关联函数 $G^{(2)}$ Fig. 3 Simulation results. (a) The second-order-correlation function $G^{(2)}$ of optical field area $L_p \times L_p$; (b) the second-order-correlation function $G^{(2)}$ of optical field area $3L_p \times 3L_p$ 阶关联函数。如图 3(a)可见,5×5 独立子光源阵列 产生的赝热光二阶关联系数最大值在 1.9 附近,该 结论证明利用少量独立子光源合成的赝热光源满足 GI 的要求。模拟还得到光场二阶关联函数 $G^{(2)}$ 的 半峰全宽和经典热光场散斑横向相干理论尺寸十分 接近^[32],在本系统中散斑横向相干尺寸和成像分辨 率等价^[33]。图 3(b)为光场二阶关联函数在 $3L_p \times$ $3L_p$ 光场区域的分布,其结构具有明显的周期性,周 期场之间具有高度关联性。实验得到结果与模拟结 果图 3(a)、(b)完全一致。从图(3)看出,探测光场 强度的统计特性在空间具有明显的周期性,GISC 信 号获取过程如图 4 所示,**Φ**为 CSRM, **Y** 为探测信号, *M* 为采样次数,*N* 为目标信号 **X** 的长度,*S* 为目标稀 疏度。为方便讨论,本文把 L_p 称为有效关联成像周 期长度。

从图 5(a)可以看出当光离开小孔传播一小段 距离时,光场二阶关联函数最大值接近 1,说明光场 几乎没有涨落,此时独立子光源的光场之间还没来 得及互相叠加,实验测到的只是单个小孔光场的二 阶关联函数,这一点也恰好说明单个小孔的光场为

图 4 关联结构随机探测矩阵的 GISC 测量过程 Fig. 4 GISC measurement process with CSRM

完全独立的相干光。随着独立子光源的光场传播距 离增加,二阶关联系数逐渐升高,当独立子光源光场 之间完全叠加时二阶关联系数达 1.9 左右。光场二 阶关联函数最大值接近 2,说明了光场具有理想热 光的统计特性,满足 GI 的需求。从图 5(b)可以看 出稀疏阵赝热光源散斑横向相干尺寸的理论 值^[32,33]和实验值随距离的变化曲线十分接近。 图 5(c)为光场周期长度 L_p 的理论^[26]计算值和实验 值的对比图,结果几乎完全吻合。

Fig. 5 Experimental results. (a) Functional relation between the maximum value of the second-correlation function and propagation distance; (b) comparison between the theoretical value and the experimental one of the transverse coherent length with varying speckle with propagation distances; (c) comparison between the theoretical value and experimental one of the varying L_p with propagation distances

图 6 为物体大小小于一个周期,参考臂光场取 一个有效关联成像区域的关联成像模拟计算和平台 实验结果。图 6(a1)是大小为 0.9 L_p ×0.9 L_p 的物 体 GI 模拟计算结果,图 6(a2)是大小为 0.9 L_p × 0.9 L_p 的物体 GISC 模拟计算结果;图 6(b1)是大小 为 0.8 L_p ×0.8 L_p 的物体 GI 平台实验结果, 图 6(b2)是大小为 0.8 L_p ×0.8 L_p 的物体 GISC 平 台实验结果。结果显示当目标尺度小于一个有效关 联成像周期长度 L_p 时可以实现 GI。该模拟和平台 实验结果证明利用少量独立子光源合束产生赝热光 可以实现 GI。

图 7 为物体大小小于一个周期,参考臂光场取 $3L_p \times 3L_p$ 有效关联成像区域的关联成像模拟计算 和平台实验结果。图 7 (a1) 是大小为 0. $6L_p \times$ 0. $6L_p$ 的物体 GI 模拟计算结果,图 7 (a2) 是大小为 0. $6L_p \times 0. 6L_p$ 的物体 GISC 模拟计算结果; 图 7 (b1) 是大小为 0. $8L_p \times 0. 8L_p$ 的物体 GI 平台实 验结果,图 7 (b2) 是大小为 0. $8L_p \times 0. 8L_p$ 的物体 GISC 平台实验结果。结果显示:当目标尺度小于 一个有效关联成像周期长度 L_p ,参考臂光场取多个

- 图 6 成像物体(a)、(b)的大小分别为 0.9L_p×0.9L_p,
 0.8L_p×0.8L_p。当参考臂光场取 L_p×L_p 区域,
 (a1)是目标(a)的 GI 模拟结果,(a2)是目标(a)的 GISC 模拟结果,(b1)是目标(b)的 GI 实验结果,
 (b2)是目标(b)的 GISC 实验结果
- Fig. 6 Test objects in sizes of (a) 0.9L_p × 0.9L_p, (b)
 0.8L_p × 0.8L_p. When the reference arm gets
 L_p×L_p optical field area, (a1) is GI simulation results of (a), (a2) is GISC simulation results of (a), (b1) is GI experimental results of (b), (b2) is GISC experimental results of (b)

- 图 7 成像物体(a)、(b)的大小分别为 0.6L_p×0.6L_p, 0.8L_p×0.8L_p。当参考臂光场取 3L_p×3L_p 区域, (a1) 是目标(a)的 GI 模拟结果,(a2)是目标(a)的 GICS 模拟结果,(b1)是目标(b)的 GI 实验结果, (b2)是目标(b)的 GISC 实验结果
- Fig. 7 Test objects in sizes of (a) 0.6 L_p × 0.6L_p, (b)
 0.8L_p × 0.8L_p. When the reference arm gets 3L_p×3L_p optical field area, (a1) is GI simulation results of (a), (a2) is GISC simulation results of (a), (b1) is GI experimental results of (b),

(b2) is GISC experimental results of (b)

周期区域时,GI 成像的目标图像在空间呈明显的周 期性结构分布,这是因为此时探测矩阵为 CSRM, 其不同周期对应位置列向量之间具有高度的关联 性,以图 7(a1)为例单个矩阵元可以在对应行向量 中找到另外 8 个与之同涨落的矩阵元。GI 模拟计 算和平台实验结果是单个物体在 3L_p×3L_p 空间形 成 3×3 结构图像,图像的亮度和空间光场的能量分 布有关。图 7(a2)、(b2)为对应实验数据的 GISC 结 果,可以看出 GISC 完全不受探测矩阵的周期性涨 落的干扰,准确重构目标图像。

图 8 为物体大小大于一个有效关联成像周期长度 L_p ,参考臂光场取 $3L_p \times 3L_p$ 有效关联成像区域 的平台实验结果。图 8(a1)是大小为 2.9 $L_p \times$ 2.9 L_p 的物体 GI 平台实验结果,图 8(a2)是大小为 2.9 $L_p \times 2$.9 L_p 的物体 GISC 平台实验结果。平台 实验显示:当目标尺度超过一个有效关联成像周期 区域时,GI 无法获取图像信息,因为关联成像周期 区域时,GI 无法获取图像信息,因为关联成像会把 空间不同周期位置的物体信息叠加到一起,以致无 法获取图像。而应用 GISC 则无视探测矩阵列向量 的关联性准确重构图像。这一实验发现扩大了基于 稀疏约束的探测矩阵的范围,突破了稀疏阵独立子 光源合束产生赝热光在 GI 成像中物体大小不能超 过一个有效关联成像周期长度 L_p 的局限性,扩大 了有效成像视场。

- 图 8 成像物体(a)大小为 2.9L_p×2.9L_p。当参考臂光场 取 3L_p×3L_p 区域,(a1)是目标(a)的 GI 实验结果, (a2)是目标(a)的 GISC 实验结果
- Fig. 8 Test objects in sizes of (a) 2. $9L_p \times 2.9L_p$. When the reference arm gets $3L_p \times 3L_p$ optical field area,
 - (a1) is GI experimental results of (a), (a2) is GISC experimental results of (a)

实验通过调节稀疏阵小孔阵列之间的间距使得 照射到目标上光场的空间有效关联成像周期长度 L_p 发生改变。图 9(a1)、(b1)、(c1)、(d1)为同一目 标分别跨越 1.6 L_p 、2.9 L_p 、5.7 L_p 、15 L_p 个有效关 联成像周期长度的 GI 成像结果,可以发现 GI 无法 获取目标图像,该实验结论和理论分析、模拟计算都 相符合。GISC 则无视探测矩阵元之间的关联性重 构图像,如图 9(a2)、(b2)、(c2)、(d2)所示。当目标 维度、目标稀疏度和采样次数都确定时,随着探测光 场的 L_p 相对于目标特征尺度的比值不断减少,在 相同的算法下对应重构图像的概率越来越低,图像 质量也越来越差。根据 Donoho 和 Michael Elad 关

- 图 9 实验结果。(a)~(d)为同一成像目标,参考臂依次 取:1. $6L_p \times 1.6L_p \times 2.9L_p \times 2.9L_p \times 5.7L_p \times 5.7L_p \times 15L_p$ 光场区域。(a1)、(b1)、(c1)、(d1)为目 标的 GI 成像实验结果,(a2)、(b2)、(c2)、(d2)为对 应目标的 GISC 成像实验结果
- Fig. 9 Experimental results. Test object in the same size when the reference arm gets (a) 1. 6L_p × 1. 6L_p,
 (b) 2. 9L_p × 2. 9L_p, (c) 5. 7L_p × 5. 7L_p. (d) 15L_p × 15L_p optical field area. (a1), (b1), (c1),
 (d1) are respectively corresponded GI experimental results of (a), (b), (c), (d). (a2),
 (b2), (c2), (d2) are (a), (b), (c), (d) respectively corresponded GISC experimental results

于测量矩阵 Φ 的 spark 理论^[34](矩阵的 spark 值描 述测量矩阵列向量之间最小线性相关度),当 spark 值的一半大于目标稀疏度时最稀疏的解存在且唯 一。从实验结果来看,相同区域内光场所包含的有 效关联成像周期越多则测量矩阵的列向量之间的相 关度越高,测量矩阵 spark 值越小,图像恢复精度也 就越低。

4 结 论

从理论、模拟计算和平台实验三方面验证了利 用少数独立子光源合束产生赝热光用于 GI 的可行 性,对 GI 成像结构,实验得到的成像结果、成像分 辨率以及有效关联成像长度 L,和理论完全吻合。 利用少数独立子光源合束产生赝热光是一种全新的 方法,该方法在 GI 的实际应用中具有重要的意义。

通过 GI 与 GISC 的模拟计算和平台实验对比, 发现当目标尺度小于一个有效成像周期长度 L_p,同 时参考臂取样范围覆盖多个周期场时,GI 在空间呈 周期结构分布,GISC 则无视探测矩阵的周期性关 联性质准确重构图像;而当目标尺度大于一个有效 成像周期长度 L_p 时,GI 无法获取目标图像,但 GISC 仍然可以重构图像。采样探测矩阵为 CSRM 时 GISC 仍然可以重构图像,这一发现扩大了基于 稀疏约束的探测矩阵的范围,突破了稀疏阵独立子 光源合束产生赝热光在 GI 成像中目标尺度不能超 过 L_p 的局限性,扩大了有效成像探测视场,在实际 应用具有重要的价值。该方法同样可以推广到电磁 波其他波段实现利用基于稀疏约束非线性图像复原 算法的 GI。

参考文献

- 1 T. B. Pittman, Y. H. Shih, D. V. Strekalov *et al.*. Optical imaging by means of two-photon quantum entanglement [J]. *Phys. Rev. A*, 1995, **52**(5): R3429~R3432
- 2 L. A. Lugiato, A. Gatti, E. Brambilla. Quantum imaging[J]. J. Opt. B, 2002, 4: S176~S183
- Wang Kaige, Cao Dezhong, Xiong Jun. Progress in correlated optics[J]. *Physcis*, 2008, **37**(4): 249~258 汪凯戈,曹德忠,熊 俊. 关联光学新进展[J]. 物理, 2008, **37**(4): 249~258
- 4 Dezhong Cao, Jun Xiong, Kaige Wang. Geometrical optics in correlated imaging systems [J]. Phys. Rev. A, 2005, 71(1): 013801
- 5 L. Mandel, E. Wolf. Coherence properties of optical fields[J]. *Rev. Mod. Phys.*, 1965, **37**(2): 231~287
- 6 Jing Cheng, Shensheng Han. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. *Phys. Rev. Lett.*, 2004, 92(9): 093903
- 7 Wenlin Gong, Pengli Zhang, Shensheng Han. Ghost "pinhole" imaging in Fraunhofer region [J]. Appl. Phys. Lett., 2009, 95(7): 071110
- 8 J. W. Goodman. Statistical Optics [M]. New York: Wiley, 1985. 397~407, 410~413
- 9 W. Martienssen, E. Spiller. Coherence and fluctuations in light beam[J]. Am. J. Phys., 1964, 32(12): 919~926
- 10 Honglin Liu, Jing Cheng, Shensheng Han. Cross spectral purity and its influence on ghost imaging experiment [J]. Opt. Commum., 2007, 273(1): 50~53
- 11 Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling base on digital micromirror device[J]. Acta Optica Sinica, 2011, **31**(7): 0711002 陆明海,沈 夏,韩申生. 基于数字微镜器件的压缩感知关联成 像研究[J]. 光学学报, 2011, **31**(7): 0711002
- 12 Qin Jiexin, Liu Shichao, Huang Genghua et al.. Research on the pseudo-thermal light made by liquid crystal spatial light modulation[J]. Chinese J. Lasers, 2012, 39(1): 0102008 秦洁心,刘世超,黄庚华等. 基于液晶光阀调制的赝热光源制备 技术研究[J]. 中国激光, 2012, 39(1): 0102008
- 13 O. Katz, B. Yaron, S. Yaron, Compressive ghost imaging[J]. *Appl. Phys. Lett.*, 2009, **95**(13), 131110
- 14 Wenlin Gong, Shensheng Han. Super-resolution ghost imaging via compressive sampling reconstruction[J]. arXiv:0910.4823v1
- 15 E. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. *IEEE Trans. Inform. Theory*, 2006, **52**(2): 489~509
- 16 E. Candes, T. Tao. Near optical signal recovery from random projections: universal encoding strategies [J]. IEEE Trans. Inform. Theory, 2006, 52(12): 5406~5425
- 17 E. Candes, M. Wakin. An introduction to compressive sampling

- [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21~30
- 18 D. Donoho. Compressed sensing [J]. IEEE Trans. Inform. Theory, 2006, 52(4): 1289~1306
- 19 G. Baraniukr. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118~121
- 20 E. Candès. Compressive sampling [C]. Proc. the International Congress of Mathematicians, Madrid, 2006
- 21 W. U. Bajwa, J. D. Haupt, G. M. Raz et al.. Toeplitzstructured compressed sensing matrices [C]. IEEE/SP 14th Workshop Statist. Signal Process., Madison, WI, Aug. 2007: 294~298
- 22 R. A. DeVore. Deterministic constructions of compressed sensing matrices[J]. J. Complexity, 2007, 23(4-6): 918~925
- 23 F. Sebert, Y. Zou, L. Ying. Toeplitz block matrices in compressed sensing and their applications in imaging[C]. ITAB, May 30-31, 2008; 47~50
- 24 R. Meyers, K. Deacon, Y. Shih. A new two-photon ghost imaging experiment with distortion study [J]. J. Mod. Opt., 2007, 54(16-17): 2381~2392
- 25 Chen Yuqing, Wang Jinghuan. Principle of Laser [M]. Hangzhou: Press of Zhejiang University, 1992. 180~186 陈钰清,王静环. 激光原理[M]. 杭州:浙江大学出版社, 1992. 180~186
- 26 M. Born, E. Wolf. Principles of Optics [M]. Yang Jiasun Transl.. Beijing. Publishing House of Electronics Industry, 2005. 371~374

M. Born, E. Wolf. 光学原理[M]. 杨葭荪 译. 北京: 电子工业 出版社, 2005. 371~374

- 27 Honglin Liu, Xia Shen, Daming Zhu *et al.*. Fourier-transform ghost imaging with pure far-field correlated thermal light [J]. *Phys. Rev. A*, 2007, 76(5): 053808
- 28 Shu Gan, Suheng Zhang, Ting Zhao et al.. Cloaking of a phase object in ghost imaging[J]. Appl. Phys. Lett., 2011, 98(11): 111102
- 29 Xinbing Song, Jun Xiong, Xiangdong Zhang et al.. Second-order Talbot self-imaging with pseudothermal light[J]. Phys. Rev. A, 2010, 82(3): 033823
- 30 Zhang Minghui, Wei Qing, Shen Xia *et al.*. Statistical optics based numerical modeling of ghost imaging and its experimental approval[J]. *Acta Optica Sinica*, 2007, **27**(10): 1858~1866 张明辉,魏 青,沈 夏等. 基于统计光学的无透镜鬼成像的数 值模拟和实验验证[J]. 光学学报, 2007, **27**(10): 1858~1866
- 31 Shen Xia, Zhang Minghui, Liu Hongling. Research on the plused pseudo-thermal light [J]. *Chinese J. Lasers*, 2009, 36 (11): 2893~2898
 沈 夏,张明辉,刘红林,脉冲式赝热光源的实验研究[I].中国

况 复,张明萍,刘红林. 脉冲八质热亢源的头短研充[J]. 平国激光,2009,**36**(11):2893~2898

- 32 J. C. Dainty. Laser Speckle and Related Phenomena [M]. Berlin: Springer-Verlag, 1975
- 33 Pengli Zhang, Wenlin Gong, Xia Shen et al.. Improving resolution by the second-order correlation of light fields[J]. Opt. Lett., 2009, 34(8): 1222~1224
- 34 D. L. Donoho, M. Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization [J]. PNAS, 2003, 100(5): 2197~2202

栏目编辑: 李文喆